Korea-Australia Rheology Journal, Vol.24, No.2, 89-95, June, 2012
Pulsatile Poiseuille flows in microfluidic channels with back-and-forth mode
E-mail:
The numerical solver for the velocity field equation describing laminar pulsatile flows driven by a timedependent pressure drop in the straight microfluidic channel of square cross-section is developed. In the computational algorithm, an orthogonal collocation on finite element scheme for spatial discretizations is combined with an adaptive Runge-Kutta method for time integration. The algorithm with the 1,521 computational nodes and the accuracy up to O(10^(-5)) is applied to the flow in the back-and-forth standing mode with the channel hydraulic diameter (Dh) in the range 10 - 500 μm and the oscillating frequency (f) of 1 to 100 Hz. As a result, a periodic steady state is defined as the flow condition where there would be no net movement after long time elapses. Following by the retardation phenomena in a cycle, reversal of the axial velocity is observed at the channel center. Major attention is focused on the influences of the size of channel cross-section and the oscillating frequency. Increasing Dh and f results in the decrease in the amplitude of mean velocity but the increase in the start-up time. Larger time delay occurs by low-frequency pulsation.
Keywords:pulsatile flow;microfluidics;Navier-Stokes equation;orthogonal collocation;adaptive integration
- Bialecki B, Fernandes RI, SIAM J. Numer. Anal., 47, 3429 (2009)
- Bode K, Hooper RJ, Paterson WR, Wilson DI, Augustin W, Scholl S, Heat Transfer Eng., 28, 202 (2007)
- Chun MS, Lee TS, Choi NW, J. Micromech.Microeng., 15, 710 (2005)
- Chun MS, Phys.Rev. E., 036312/1-9, 83 (2011)
- Edwards MF, Wilkinson MA, Trans. Inst. Chem.Eng., 49, 85 (1971)
- Fan C, Chao BT, ZAMP., 16, 351 (1965)
- Finlayson BA, Nonlinear Analysis in Chemical Engineering., McGraw-Hill, New York. (1980)
- Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM, Lab Chip., 7, 1479 (2007)
- Gong L, Wu J, Wang L, Cao K, Phys. Fluids., 063603/1-7., 20 (2008)
- Hodis S, Zamir M, Phys. Rev. E., 051923/1-8., 83 (2011)
- Hu Y, Gopal A, Lin K, Peng Y, Tasciotti E, Zhang X, Ferrari M, Biomicrofluidics., 013410/1-7, 5 (2011)
- Kim KS, Simon L, Comput. Chem. Eng., 33(6), 1212 (2009)
- Kim KS, Ryoo W, Chun MS, Chung GY, Lee SO, Korean J. Chem. Eng., 29(2), 162 (2012)
- Leal LG, Laminar flow and convective transport, Butterworth-Heinemann, Boston (1992)
- Lejeunes S, Boukamel A, Meo S, Comput. Struct., 89, 411 (2011)
- Leslie DC, Easley CJ, Seker E, Karlinsey JM, Utz M, Begley MR, Landers JP, Nat. Phys., 5, 231 (2009)
- Lide DR, CRC Handbook of Chemistry and Physics., 87th ed., CRC Press, Boca Raton. (2006)
- Morris CJ, Forster FK, Exp. Fluids., 36, 928 (2004)
- Stone HA, Stroock AD, Ajdari A, Annu. Rev. Fluid Mech., 36, 381 (2004)
- Tikekar M, Singh SG, Agrawal A, Microfluid Nanofluid., 9, 1225 (2010)
- Vedel S, Olesen LH, Bruus H, J. Micromech. Microeng., 035026/1-11, 20 (2010)
- Womersley RJ, J. Physiol.-London., 126, 553 (1955)