화학공학소재연구정보센터
Korean Journal of Rheology, Vol.3, No.1, 38-46, April, 1991
저분자량/고분자량 폴리스타이렌 블렌드의 점탄성
Viscoelastic Properties of Low/ High-Molecular-Weight Polystyrene Blends
초록
저분자량(분자량 : 1.04×104g/mole)과 고분자랑(3.84×106) 폴리스타이렌 브렌드를 제조하고 무접촉, 무마찰을 이용한 비틀림 크립장치를 사용하여 점도, 크립 캄플라이언스들을 측정하고 또 지연 스펙트라도 계산해 내었다. 고분자량의 농도는 0, 2, 10, 20, 50, 70, 100 중량 퍼센트였다. 점도는 블렌드의 중량평균 분자량이 임계분자량 이상이면 중량평균의 3.5승에 비례했다. 중량평균 분자량>임계분자량 인 블렌드의 경우 정상상태 회복 캄플라이언스는 중량평균의 -2.3승에 비례했다. 지연스펙트라를 검토한 결과 폴리스타이렌의 임계분자량은 38000g/mole쯤으로 추정되었다.
Creep compliance measurements were conducted using a magnetic bearing torsional creep apparatus for polystyrene/polystyrene blend-like solutions whose high-molecular-weigh polymer concentrations were 0, 2, 10, 20, 50, 100 wt%. For the blends whose weight-average-molecular-weight (Mw) is larger than the critical molecular-weight (Mc), the zero-shear viscosities were proportional to (Mw) 3.5. When Mw > Mc, the steady state recovery compliance Jr showed -2.3rd power dependency to the Mw. The critical molecular weight Mc for polystyrene was found to be 38000 g/mole from analysis of the retardation spectra.
  1. Ferry JD, "Viscoelastic Properties of Polymers," 3rd ed., Wiley, New York (1980)
  2. deGennes PG, "Scaling Concepts in Polymer Physics," Cornell University Press, Ithaca, NY (1979)
  3. Doi M, Edwards SF, "The Theory of Polymer Dynamics," Oxford University Press, Oxford (1986)
  4. Bueche F, "Physical Properties of Polymers," John Wiley & Sons, New York (1962)
  5. Graessley WW, Adv. Polym. Sci., 47 (1982)
  6. Graessley WW, J. Chem. Phys., 47, 1942 (1982)
  7. Kavassalis TA, Noolandi J, Macromolecules, 22, 2709 (1989) 
  8. Kotliar AM, Kumar R, Back RA, J. Polym. Sci. B: Polym. Phys., 28, 1033 (1990) 
  9. Lin YH, Macromolecules, 20, 885 (1987) 
  10. McAdams JE, Williams MC, Macromolecules, 13, 858 (1980)
  11. Watanabe H, Kotaka T, Macromolecules, 17, 2316 (1984) 
  12. Watanabe H, Sakamoto T, Kotaka T, Macromolecules, 18, 1008 (1985) 
  13. Watanabe H, Sakamoto T, Kotaka T, Macromolecules, 18, 1436 (1985) 
  14. Watanabe H, Kotaka T, Macromolecules, 19, 2520 (1986) 
  15. Watanabe H, Kotaka T, Macromolecules, 20, 535 (1987) 
  16. Struglinski MJ, Graessley WW, Macromolecules, 18, 2630 (1985) 
  17. Lin YH, Macromolecules, 17, 2846 (1984) 
  18. Lin YH, Macromolecules, 18, 2779 (1985) 
  19. Lin YH, Macromolecules, 19, 159 (1985)
  20. Lin YH, Macromolecules, 19, 168 (1985) 
  21. Lin YH, Macromolecules, 19, 1108 (1985) 
  22. Doi M, Graessley WW, Helfand E, Pearson DS, Macromolecules, 20, 1900 (1987) 
  23. Choi KS, Chung IJ, Kim HY, Macromolecules, 21, 3171 (1988) 
  24. Meister BJ, Macromolecules, 22, 3611 (1989) 
  25. Colby RH, Polymer, 30(7), 1275 (1989) 
  26. Orbon SJ, Plazek DJ, J. Polym. Sci. B: Polym. Phys., 17, 1871 (1979)
  27. Plazek DJ, J. Polym. Sci. A: Polym. Chem., 6, 621 (1968)
  28. Markovitz H, "Linear Viscoelasticity; an Introduction," Lecture note, Carnegie-Mellon University, pp. 1-10 (1985)
  29. Fox JG, Loshaek S, J. Polym. Sci., 15, 371 (1955) 
  30. Leaderman H, Smith RG, Williams LC, J. Polym. Sci., 36, 233 (1959) 
  31. Altares T, Wyman DP, Allen VR, J. Polym. Sci. A: Polym. Chem., 2, 4533 (1964)
  32. Williams ML, Landel RF, Ferry JD, J. Am. Chem. Soc., 77, 3701 (1955) 
  33. Berry GC, Plazek DJ, "Glass: Science and Technology," ed. by D.R. Uhlmann and N.J. Kreidl, Vol. 3: Viscosity and Relaxation, Academic Press INC., New York, Chapter 6 (1986)
  34. Riande E, Markovitz H, Plazek DJ, Raghupathi N, J. Polym. Sci. Polym. Symp.(50), 405 (1975)