Journal of Physical Chemistry B, Vol.114, No.30, 9894-9904, 2010
Modulation of Homocysteine Toxicity by S-Nitrosothiol Formation: A Mechanistic Approach
The metabolic conversion of homocysteine (HCYSH) to homocysteine thiolactone (HTL) has been reported as the major cause of HCYSH pathogenesis. It was hypothesized that inhibition of the thiol group of HCYSH by S-nitrosation will prevent its metabolic conversion to HTL. The kinetics, reaction dynamics, and mechanism of reaction of HCYSH and nitrous acid to produce S-nitrosohomocysteine (HCYSNO) was studied in mildly to highly acidic pHs. Transnitrosation of this non-protein-forming amino acid by S-nitrosoglutathione (GSNO) was also studied at physiological pH 7.4 in phosphate buffer. In both cases, HCYSNO formed quantitatively. Copper ions were found to play dual roles, catalyzing the rate of formation of HCYSNO as well as its rate of decomposition. In the presence of a transition-metal ions chelator, HCYSNO was very stable with a half-life of 198 h at pH 7.4. Nitrosation by nitrous acid occurred via the formation of more powerful nitrosating agents, nitrosonium cation (NO+) and dinitrogen trioxide (N2O3). In highly acidic environments, NO+ was found to be the most effective nitrosating agent with a first-order dependence on nitrous acid. N2O3 was the most relevant nitrosating agent in a mildly acidic environment with a second-order dependence on nitrous acid. The bimolecular rate constants for the direct reactions of HCYSH and nitrous acid, N2O3, and NO+ were 9.0 x 10(-2), 9.50 x 10(3), and 6.57 x 10(10) M-1 s(-1), respectively. These rate constant values agreed with the electrophilic order of these nitrosating agents: HNO2 < N2O3 < NO+. Transnitrosation of HCYSH by GSNO produced HCYSNO and other products including glutathione (reduced and oxidized) and homocysteine-glutathione mixed disulfide. A computer modeling involving eight reactions gave a good fit to the observed formation kinetics of HCYSNO. This study has shown that it is possible to modulate homocysteine toxicity by preventing its conversion to a more toxic HTL by S-nitrosation.