화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.114, No.39, 12480-12487, 2010
Hybrid Nanocomposites: Advanced Nonlinear Method for Calculating Key Kinetic Parameters of Complex Cure Kinetics
Complex cure kinetics involved in the elaboration of organic/inorganic hybrid silicate nanocomposites based on diglycidyl ether of bisphenol A (DGEBA), 1,3-phenylenediamine (m-PDA), and modified montmorillonite (MMTm) clay have been studied. An advanced isoconversional method has been applied to nonisothermal data in order to evaluate cure kinetic parameters. A new method based on nonlinear optimization was proposed to compute nonisothermal kinetic parameters avoiding complex optimization techniques. The objective is to obtain kinetic parameters rather than modeling values in order to give more insight into the elucidation of complex cure mechanisms. Key kinetic parameters of cure have been computed according to this method. It appears that the reaction mechanism changes if MMTm is added to the curing system. The results reveal an increase of the efficiency of collisions in presence of MMTm at the beginning of the cure and an increase of the frequency of diffusion jumps at the later stage of the reaction.