Journal of Physical Chemistry B, Vol.115, No.6, 1363-1367, 2011
Evidence of Two Distinct Mechanisms Driving Photoinduced Matter Motion in Thin Films Containing Azobenzene Derivatives
Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity, pattern and the other by the light polarization pattern. The intensity-driven mechanism is found to critically depend on the polymer matrix while the polarization-driven mechanism occurs with almost the same efficiency in different materials. Depending on the relationship between the polarization and intensity patterns, the two processes may either compete or cooperate giving rise to a nontrivial directional mass transport process.