- Previous Article
- Next Article
- Table of Contents
Korean Journal of Rheology, Vol.4, No.2, 148-160, December, 1992
폴리프로필렌/폴리에틸렌 혼합물의 용융방사에 있어서 연신공명에 관한 연구
Studies on the Draw Resonance in the Melt Spinning of Polypropylene/polyethylene Blends - Rheological Properties and Draw Resonance of Polypropylene/polyethylene Blends -
초록
폴리프로필렌(PP)과 폴리에털렌(PE) 혼합물의 용융방사에 있어서 불안정성을 연구하였으며, 혼합물의 유변학적 성질, 혼합물의 형태학적 특성과 연신공명과의 관계를 고찰한 것이다. 신장점도는 spinline rheometer를 사용하여 측정하였으며, 섬유 직경은 광센서를 이용하여 방사공정에서 on-line 측정하였고, 연신공명의 주기는 Fourier 변환을 이용하여 분석하였다. PP와 PE 혼합물의 용융방사에 있어서, PP 함유량이 많을수록 연신공명이 발생하는 임계연신비가 줄어들고 그 주기는 길어진다. 정상상태에서 구한 유변학적 성질을 이용하여 Shah와 Pearson의 이론식과 Fisher와 Denn의 이론식으로부터 구한 임계연신비값이 실험치와 많은 차이를 보여주었다. 연신공명에 의하여 형성된 섬유의 가는 부분의 배향도는 굵은 부분에 비하여 크게 향상되었으며, PP 함유량이 많을수록 배향도가 크게 등가하였다.
The spinning Instabilities of polypropylene (PP) and polyethylene (PE) blends were studied. The relations between the draw resonance and the rheological properties and the morphologies of the blends were investigated. The elongational viscosities were measured with a spinline rheometer and a photo sensor was used for on-line measurements of the diameter variations in the melt spinning process. The period of draw resonance were analyzed by Fourier transform. The experimental results showed that critical draw ratio was lowered and the period of draw resonance increased as the PP content increased. The experimental and the theoretical critical draw ratios, which were calculated from the formula of Shah and Pearson and/or the formula of Fisher and Denn using the rheological properties at steady state, showed a great difference. The molecular orientation of the thinner part of the fiber was greater than that of the thicker part. And the molecular orientation increased as the PP content increased.
- 조준한, 석사학위논문, 서울대학교 (1989)
- 김창건, 석사학위 논문, 서울대학교 (1991)
- 박중휘, 기영철, 김상용, 한국섬유공학회지, 제출중
- Christensen RE, SPE J., 18, 751 (1962)
- Pearson JRA, Matovitch MA, Ind. Eng. Chem. Fundam., 8, 605 (1969)
- Shah YT, Pearson JRA, Polym. Eng. Sci., 12, 219 (1972)
- Fisher RJ, Denn MM, Appl. Polym. Symp., 27, 103 (1975)
- Denn MM, Petrie CJS, Avenas P, AIChE J., 21, 791 (1975)
- Kase S, Matsuo T, J. Polym. Sci. A: Polym. Chem., 3, 2541 (1965)
- Kase S, J. Appl. Polym. Sci., 18, 3279 (1974)
- Santamaria A, White JL, J. Appl. Polym. Sci., 31, 209 (1986)
- Han CD, Lamonte RR, Shah YT, J. Appl. Polym. Sci., 16, 3307 (1972)
- Bergonzoni A, Dicrease AJ, Polym. Eng. Sci., 6, 50 (1966)
- Meissner J, Polym. Eng. Sci., 27, 537 (1987)
- Laun HM, Munstedt H, Rheol. Acta, 15, 517 (1976)
- Laun HM, Munstedt H, Rheol. Acta, 17, 415 (1978)
- Brown ME, "Introduction to Thermal Analysis," Chapman and Hall (1988)
- Wolfram S, "Mathematica," 2nd ed., Addison-Wesley (1991)
- Shroff RN, Cancio LV, Trans. Soc. Rheol., 21, 419 (1977)
- Han CD, Kim YW, J. Appl. Polym. Sci., 20, 1555 (1976)
- Patel RM, Bogue DC, J. Rheol., 33, 6047 (1989)
- Ide Y, White JL, J. Appl. Polym. Sci., 22, 1061 (1978)
- Chen I, Hagler GE, Abbott LE, Bogue DC, White JL, Trans. Soc. Rheol., 16, 473 (1972)
- Matsumoto T, Bogue DC, Polym. Eng. Sci., 18, 564 (1978)
- Ziabicki A, J. Non-Newton. Fluid Mech., 30, 141 (1988)