Journal of Physical Chemistry A, Vol.115, No.23, 6177-6183, 2011
Structure and Dynamics of Water Dangling OH Bonds in Hydrophobic Hydration Shells. Comparison of Simulation and Experiment
Molecular dynamics and electric field strength simulations are performed in order to quantify the structural, dynamic, and vibrational properties of non-H-bonded (dangling) OH groups in the hydration shell of neopentane, as well as in bulk water. The results are found to be in good agreement with the experimentally observed high-frequency (similar to 3660 cm(-1)) OH band arising from the hydration shell of neopentanol dissolved in HOD/D(2)O, obtained by analyzing variable concentration Raman spectra using multivariate curve resolution (Raman-MCR). The simulation results further indicate that hydration shell dangling OH groups preferentially point toward the central carbon atom of neopentane to a degree that increases with the lifetime of the dangling OH.