화학공학소재연구정보센터
Korean Journal of Rheology, Vol.6, No.1, 60-65, June, 1994
3차원 덕트유동에서의 변형 척도
Deformation Measure in Three-Dimensional Duct Flows
초록
덕트유동에서, 재료입자의 변형은 그 입자의 초기위치와 방향에 의존한다. 이러한 변형과정을 이해하기 위하여, 변형구배텐서(deformation gradient tensor)를 덕트 전단면에 걸처 초기위치와 시간의 함수로 계산할 수 있어야 한다. 따라서 본 논문은 입자궤적 궤도(particle trajectory orbit)에 접하는 직교좌표계를 선택하여 3차원 덕트 유동에서의 변형구배텐서를 효과적으로 계산할 수 있는 간단한 방법을 제안한다. 이러한 특수 좌표계로부터 구해진 변형구배텐서가 덕트유동에서의 변형 척도를 이해하는데에 매우 중요함을 알 수 있었다.
Deformation of materials in the duct flow depends on the initial position and the orientation of the material element. To understand the details of the deformation process, one has to evaluate the deformation gradient tensor as a function of time and the initial position over the entire cross section in the three-dimensional duct flow. Therefore, the present paper proposes a simple method to effectively calculate the deformation gradient tensor over the entire section in the three-dimensional duct flow in a cartesian coordinate system aligned with the particle trajectory orbit. Components of the deformation gradient tensor in such a special coordinate system are found to play an important role in understanding a deformation measure in duct flows.
  1. Franjione JG, Ottino JM, Phys. Fluids A, 3, 2819 (1991) 
  2. Kim SJ, Kwon TH, Polym. Eng. Sci., in press (1993)
  3. Joo JW, Kwon TH, Polym. Eng. Sci., 33, 959 (1993) 
  4. Kwon TH, Joo JW, Kim SJ, Polym. Eng. Sci., 34(3), 174 (1994) 
  5. Kim SJ, Kwon TH, Proc. 1993 Annual Meeting of Korean Society of Rheology, 40-43 (1993)
  6. Malvern LE, "Introduction to the Mechanics of A Contiunous Medium," Prentice Hall (1969)
  7. Ottino JM, "The Kinematics of Mixing: Streching, Chaos and Transport," Cambridge Univ. Press, Cambridge (1989)
  8. Wiggins S, "Introduction to Applied Nonlinear Dynamical System and Chaos," Springer-Verlag, New York, Inc. (1990)
  9. Kim SJ, Kwon TH, Proc. 1993 Annual Meeting of Korean Society of Rheology, 22-25 (1993)