Journal of Physical Chemistry A, Vol.116, No.10, 2506-2518, 2012
Collision Dynamics of O(P-3) + DMMP Using a Specific Reaction Parameters Potential Form
Starting from previous benchmark CBS-QB3 electronic structure calculations (Conforti, P. F.; Braunstein, M.; Dodd, J. A. J. Phys. Chem. A 2009, 113, 13752), we develop two global potential energy surfaces for O(P-3) + DMMP collisions, using the specific reaction parameters approach. Each surface is simultaneously fit along the three major reaction pathways: hydrogen abstraction, hydrogen elimination, and methyl elimination. We then use these surfaces in classical dynamics simulations and compute reactive cross sections from 4 to 10 km s(-1) collision velocity. We examine the energy disposal and angular distributions of the reactive and nonreactive products. We find that for reactive collisions, an unusually large amount of the initial collision energy is transformed into internal energy. We analyze the nonreactive and reactive product internal energy distributions, many of which fit Boltzmann temperatures up to similar to 2000 K.