Journal of Physical Chemistry A, Vol.116, No.21, 5145-5150, 2012
Time-Resolved Studies of Charge Recombination in the Pyrene/TCNQ Charge-Transfer Crystal: Evidence for Tunneling
Previous studies of solid-state tetracyanobenzene-based donor-acceptor complexes showed that these materials were highly susceptible to both laser and mechanical damage that complicated the analysis of their electron-transfer kinetics. In this paper, we characterize the optical properties of a pyrene/tetracyanoquinodimethane charge-transfer crystal that is much more robust than the tetracyanobenzene compounds. This donor-acceptor complex has a charge-transfer absorption that extends into the near-infrared, rendering the crystal black. We use time-resolved fluorescence and diffuse reflectance transient absorption to study its dynamics after photoexcitation. We show that the initially excited charge-transfer state undergoes a rapid, monoexponential decay with a lifetime of 290 ps at room temperature. There is no evidence for any long-lived intermediate or dark states; therefore, this decay is attributed to charge recombination back to the ground state. Fluorescence lifetime measurements demonstrate that this process becomes temperature-independent below 60 K, indicative of a thermally activated tunneling mechanism. The subnanosecond charge recombination makes this low-band-gap donor-acceptor material a poor candidate for generating long-lived electron-hole pairs.