화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.26, 7161-7168, 2012
TD-CI Simulation of the Strong-Field Ionization of Polyenes
Ionization of ethylene, butadiene, hexatriene, and octatetraene by short, intense laser pulses was simulated using the time-dependent single-excitation configuration-interaction (TD-CIS) method and Klamroth's heuristic model for ionization (I. Chem. Phys. 2009, 131, 114304). The calculations used the 6-31G(d,p) basis set augmented with up to three sets of diffuse sp functions on each heavy atom as well as the 6-311++G(2df,2pd) basis set. The simulations employed a seven-cycle cosine pulse (omega = 0.06 au, 760 nm) with intensities up to 3.5 X 10(14) W cm(-2) (E-max = 0.10 au) directed along the vector connecting the end carbons of the linear polyenes. TD-CIS simulations for ionization were carried out as a function of the escape distance parameter, the field strength, the number of states, and the basis set size. With a distance parameter of 1 bohr, calculations with Klamroth's heuristic model reproduce the expected trend that the ionization rate increases as the molecular length increases. While the ionization rates are too high at low intensities, the ratios of ionization rates for ethylene, butadiene, hexatriene, and octatetraene are in good agreement with the ratios obtained from the ADK model. As compared to earlier work on the optical response of polyenes to intense laser pulses, ionization using Klamroth's model is less sensitive to the number of diffuse functions in the basis set, and only a fraction of the total possible CIS states are needed to model the strong field ionizations.