화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.24, 7881-7886, 2011
Hydrophobic Transition in Porous Amorphous Silica
Realistic models of amorphous silica surfaces with different silanol densities are built using Monte Carlo annealing. Water-silica interfaces are characterized by their energy interaction maps, adsorption isotherms, self-diffusion coefficients, and Poiseuille flows. A hydrophilic to hydrophobic transition appears as the surface becomes purely siliceous. These results imply significant consequences for the description of surfaces. First, realistic models are required for amorphous silica interfaces. Second, experimental amorphous silica hydrophilicity is attributed to charged or uncharged defects, and not to amorphousness. In addition, autoirradiation in nuclear waste glass releases hydrogen atoms from silanol groups and can induce such a transition.