Journal of Physical Chemistry B, Vol.116, No.3, 1155-1163, 2012
Domain Specific Association of Small Fluorescent Probe trans-3-(4-Monomethylaminophenyl)-Acrylonitrile (MMAPA) with Bovine Serum Albumin (BSA) and Its Dissociation from Protein Binding Sites by Ag Nanoparticles: Spectroscopic and Molecular Docking Study
Photoinduced intramolecular charge transfer produced a polar excited state in trans-3-(4-monomethylaminophenyl)acrylonitrile (MMAPA), rendering the resulting emission sensitive to the medium polarity. Strong binding interaction of silver nanoparticles with the probe was observed, causing fluorescence quenching through the static quenching process. The probe MMAPA was found to bind to the less polar hydrophobic, restricted proteinous environment of bovine serum albumin (BSA) resulting in the blue shift of the emission maximum with an increase in emission intensity and fluorescence anisotropy. Studies using site markers of flufenamic acid and phenylbutazone coupled with molecular docking results predicted that the binding site of the probe is in. between subdomains IIIA and IB of BSA and is different from the conventional Sudlow sites. The denaturation of the probe-bound BSA by urea or heat released the probe from this proteinous environment to water marked by exactly reverse spectral changes. On the interaction of silver nanoparticles with the probe bound protein, the probe was observed to move from its binding site in the protein to the Ag-0 nanoparticle surface involving conformational changes of the protein near the probe binding site.