Journal of Physical Chemistry B, Vol.116, No.15, 4661-4670, 2012
Investigation of the Differences in Thermal Stability of Two Recombinant Human Serum Albumins with 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine Liposomes by UV Circular Dichroism Spectropolarimetry
Previous studies have demonstrated that liposome-protein interactions can result in changes to the thermal stability of the protein. We utilized far-UV circular dichroism spectropolarimetry and fluorescence spectroscopy to investigate the interaction of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes with two recombinant human serum albumins (rHSA). We demonstrate that rHSA expressed in Oryza sativa (OsrHSA) has improved secondary structure thermal stability compared to rHSA expressed in Pichia pastoris (PprHSA). A similar stability profile was observed when comparing bovine serum albumin (BSA) and defatted bovine serum albumin (dfBSA), suggesting the presence of fatty acids may be responsible for the improved stability of OsrHSA. Addition of DPPC liposomes reduced the thermal stability of both OsrHSA and BSA, but not of PprHSA or dfBSA. DPPC liposomes may disrupt stabilizing native fatty acids on OsrHSA and BSA,