화학공학소재연구정보센터
Korean Journal of Rheology, Vol.7, No.2, 150-157, August, 1995
협착이 발생된 원관과 분기관내 혈액과 혈액대용유체의 정상유동해석
Steady Flow Analyses of Blood and the Blood Analogue Fluids in the Stenosed Circular and Bifurcated Tubes
초록
본 논문의 목적은 협착이 발생된 원관과 분기관내 혈액과 혈액대용유체의 유동문제에 수치해석방법을 적용하여 유동특성을 파악하는데 있다. 혈액대용유체로서는 Separan AP-273 500wppm 수용액과 Carpobol 934 1.Ow% 수용액을 사용하였다. Carbopol 수용액의 유변학적 성질은 수정멱법칙보델, 그리고 혈액과 Separan 수용액의 유변학적 성질은 Carreau모델로 나타내었다. 협착관유동에서 Carbopol 수용액의 재부착거리는 혈액이나 Separan수용액의경우보다 길고, 협착으로 인한 압력강하는 Carbopol 수용액, 혈액, Separan 수용액의 순으로작게 나타난다. 분기관유동에서 Separan 수용액의 압력손실은 혈액과 Carbopol수용액보다 작게 나타나고, 협착이 발생된 분기간내에서 혈액과 Separan수용액의 압력손실은 협착이 없는 분기관의 압력손실보다 크게 증가한다.
The purpose of this paper is to predict the flow characteristics of blood and the blood analogue fluids in the stenosed circular and bifurcated tubes by using numerical simulation techniques. Aqueous Separan AP-273 500wppm and Carbopol 934 1.Ow% solutions are used as for blood analogue fluids. Rheological property of the Carbopol solution is represented by the modified power-law model, blood and Separan solution by the Carreau model. Reattachment length of Carbopol solution in the stenosed tube is longer than that of blood and Separan solution and the stenosis effects on the pressure drop along the axis is most serious for Carbopol solution and least for Separan solution. Separan solution shows lower pressure drops along the axis than blood and Carbopol solution. Pressure losses of blood and Separan solution in the bifurcation tube with stenosis are much higher than those in the bifurcation tube without stenosis.
  1. Nichols WW, O'Rourke MF, "Blood Flow in Arteries," 3rd Ed., Lea & Febiger, Philadelphia (1990)
  2. 서상호, 노형운, 유상신, 공기조화·냉동공학 하계학술발표회 논문집, 233 (1994)
  3. Cho YI, Kensey KR, Adv. Bioeng., 15, 147 (1989)
  4. Hong SK, Workshop on Biomedical Fluid Dynamics, AFERC, POSTECH, 21 (1993)
  5. Chang JK, Min BG, Kim IY, Kim HC, Roh JR, Han DC, Workshop on Biomedical Fluid Dynamics, AFERC, POSTECH, 1 (1993)
  6. 서상호, 유상신, 장남일, 공기조화·냉동공학 논문집, 6, 227 (1994)
  7. WardSmith AJ, "Pressure Losses in Ducted Flows," Butterworths, London (1971)
  8. Liepsch D, Moravec S, Rastagi AK, Vlachos NS, J. Biomechanics, 15, 473 (1982) 
  9. Banerjee RK, Ph.D. Thesis, Drexel University (1992)
  10. Cho YI, Back L, Crawford DW, ASME J. Biomech. Eng., 107, 257 (1985)
  11. Yoo SS, AFERC 연구발표회, AFR-93-H, 155 (1994)
  12. Choi HG, Yoo JY, The 5th Asian Congress of Fluid Mechanics, Taejon, Korea, 1124 (1992)
  13. 유상신, 서상호, 장남일, 한국유변학회 춘계학술대회 논문집, 48 (1994)
  14. Pak B, Cho YI, Choi SUS, J. Non-Newton. Fluid Mech., 37, 175 (1990) 
  15. Skalak R, keller SR, Secomb TW, J. Biomech. Eng., 103, 102 (1982)
  16. Biro GP, Cardiovascular Res., 16, 194 (1982)
  17. Ortega JM, Rheinboldt WC, "Iterative Solution of Non-Linear Equations in Several Variables," Academic Press, New York (1980)