화학공학소재연구정보센터
Korean Journal of Rheology, Vol.7, No.3, 225-236, December, 1995
상이한 가교제로 조성된 카본블랙 충진 망상 고무의 가교 탄성율과 엉킴 탄성율
Crosslink and Entanglement Moduli of Carbon Black Filled Network Rubbers Prepared by Different Curing Agents
초록
세가지 가교제 즉 황, tetramethylthiuram disulfide (TMTD) 및 dicumyl peroxide (DCP)로 각각 가교시킨 카본블랙 충진 고분자 방상 시료들에 대해 일축연신 실험을 통해 얻은 Mooney plot를 분석, 가교 탄성율 Gc와 엉킴 탄성율 Ge를 각각 구하였다. 각 가교계에 대하여 Gc를 통해서는 가교 사슬간의 평균분자량 망상 사슬과 카본블랙간 결합체의 밀도 및 평균 면적등을, Ge를 통해서는 카본블랙 첨가에 따른 관경 비를 각각 평가하였다. 황 가교제의 경우 Gc가 가장 높았으며 망상 사슬과 카본블랙간의 결합이 가장 잘 이루어졌다. TMTD와 DCP가교제의 경우는 황의 경우보다 카본블랙 입자와의 결합력은 낮았으나 결합체들의 분포는 더욱 조밀하게 나타났다. 또한 Ge 평가로부터는 TMTD 가교계가 카본블랙 충진에 의해 관경이 가장 크게 증가함을 알 수 있었다.
For the carbon black filled polymer network samples prepared by three different curing agents (sulfur, TMTD, and DCP), crosslink modulus Gc and entanglement modulus Ge were obtained from the Mooney plot which was made through the uniaxial elongation test. Some parameters such as average molecular mass between the crosslink strands, density and average area of couples between rubber phase and carbon black particles (through Gc data), and ratio of the tube radii of network chains filled and unfilled with carbon black (through Ge data) were investigated for polymer networks prepared by different curing agents. The network sample cured by sulfur was most remarkable in the Gc and the coupling potential between network chains and carbon black particles. The samples cured by TMTD and DCP exhibited lower coupling potentials but narrower distribution of the couples than the sulfur-cured network. The TMTD-cured network showed the highest increase in the tube radius by the addition of carbon black.
  1. Kraus G, Adv. Polym. Sci., 8, 155 (1971)
  2. Boonstra BB, Polymer, 20, 691 (1979) 
  3. Rigbi Z, Adv. Polym. Sci., 36, 21 (1980)
  4. Donnet JB, Vidal A, Adv. Polym. Sci., 76, 103 (1986)
  5. Bueche AM, J. Polym. Sci., 25, 19 (1957) 
  6. Mark JE, Kautsch. Gummi Kunstst., 42, 191 (1989)
  7. Wolff S, Donnet JB, Rubber Chem. Technol., 63, 32 (1990)
  8. "고무화학," 화학세계, 35(4), 23 (1995)
  9. Heinrich G, Straube E, Helmis G, Adv. Polym. Sci., 85, 33 (1988)
  10. Straube E, Heinrich G, Kautsch. Gummi Kunstst., 44, 734 (1991)
  11. Heinrich G, Kautsch. Gummi Kunstst., 45, 173 (1992)
  12. Heinrich G, Rennar N, Stahr J, Kautsch. Gummi Kunstst., 45, 442 (1992)
  13. Heinrich G, Vilgis TA, Kautsch. Gummi Kunstst., 46, 283 (1993)
  14. Heinrich G, Vilgis TA, Macromolecules, 26, 1109 (1993) 
  15. Deam RT, Edwards SF, Phil. Trans. Roy. Soc. A, 280, 317 (1980)
  16. Funt JM, Rubber Chem. Technol., 61, 842 (1988)
  17. Bueche F, "Reinforcement of Elastomers," ed., by G. Kraus, Interscience, N.Y., p. 1 (1965)
  18. Mark JE, Rubber Chem. Technol., 48, 495 (1975)
  19. Wagner MH, J. Rheol., 38(3), 655 (1994) 
  20. Medalia AJ, Rubber Chem. Technol., 45, 1172 (1972)
  21. Mark JE, "The Rubber Elastic State," in "Physical Properties of Polymers," 2nd ed., Am. Chem. Soc., p. 3 (1993)
  22. Marinovic T, Kralj-Novak M, Veksli Z, Kautsch. Gummi Kunstst., 45, 190 (1992)
  23. Vilgis TA, Macromolecules, 25, 399 (1992) 
  24. Hergenrother WL, Doshak JM, J. Appl. Polym. Sci., 48, 1621 (1993) 
  25. Vilgis TA, Heinrich G, Macromolecules, 27(26), 7846 (1994)