화학공학소재연구정보센터
Journal of Power Sources, Vol.196, No.14, 5853-5857, 2011
Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell
Au and AuAg electrocatalysts were prepared by chemical reduction and supported on Vulcan XC-72 for their application in a laminar membraneless microfluidic fuel cell that operates with glucose as fuel in basic media. Average particle size and lattice parameters were determined by X-ray diffraction technique, resulting in 4 and 21 nm for Au and AuAg respectively. The composition ratio of Au and Ag in the mixture was estimated by X-ray fluorescence. X-ray photoelectron spectroscopy measurements were used to determinate oxidation states. The electrocatalytic activity of Au/C and AuAg/C materials was investigated in terms of glucose electrooxidation in 0.3 M KOH. The results obtained by electrochemical studies in a half cell configuration showed that the onset potential for glucose oxidation on AuAg/C presented a negative shift ca. 150 mV compared with Au/C. AuAg/C was evaluated in a microfluidic fuel cell operated with glucose as fuel showing good stability and higher performance when was compared with Au/C. (C) 2011 Elsevier B.V. All rights reserved.