화학공학소재연구정보센터
Journal of Power Sources, Vol.196, No.15, 6366-6373, 2011
Methanol steam reforming in microreactor with constructal tree-shaped network
The construcal tree-shaped network is introduced into the design of a methanol steam microreactor in the context of optimization of the flow configuration. A three-dimensional model for methanol steam reaction in this designed microreactor is developed and numerically analyzed. The methanol conversion, CO concentration in the product and the total pressure drop of the gases in the microreactor with constructal tree-shaped network are evaluated and compared with those in the serpentine reactor. It is found that the reaction of methanol steam reforming is enhanced in the constructal tree-shaped microreactor, since the tree-shaped reactor configuration, which acts an optimizer for the reactant distribution, provides a reaction space with larger surface-to-volume ratio and the reduction of reactant velocities in the branches. Compared with the serpentine microreactor, the constructal reactor possesses a higher methanol conversion rate accompanied with a higher CO concentration. The conversion rate of the constructal microreactor is more than 10% over that of serpentine reactor. More particularly, the reduction of flow distance makes the constructal microreactor still possess almost the same pressure drop as the corresponding serpentine reactor, despite that the bifurcations induce extra local pressure loss, and the reduction of channel size in branches also causes pressure losses. (C) 2011 Elsevier B.V. All rights reserved.