화학공학소재연구정보센터
Journal of Power Sources, Vol.196, No.17, 7152-7160, 2011
Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit
The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (eta.POX = 23%, eta.AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation. (C) 2010 Elsevier B.V. All rights reserved.