화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.5, 1741-1750, September, 2012
Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent
E-mail:
Pine cone shell (PCS), a vegetable solid waste has been used as effective and efficient biosorbent for the removal of Cu(II) from aqueous solutions. The biosorbent was characterized by elemental analysis, potentiometric titrations, surface area and pore size distribution and FTIR analyses. Batch adsorption experiments were carried out as a function of solution pH, particle size, biosorbent dosage, contact time, and initial metal ion concentration. Then, equilibrium isotherms and kinetic data parameters were evaluated. Equilibrium data agreed well with Langmuir isotherm model. The biosorption capacities of PCS for Cu(II) were determined at 25 ℃ with the Langmuir model as 6.81 mg/g. The kinetics data fitted well into the pseudo-second-order model with correlation coefficient greater than 0.99. Also, dynamic biosorption studies were carried out using a packed-bed column and the main column parameters were determined. Pine cone shell was shown to be a promising biosorbent for Cu(II) removal from aqueous solutions. Finally, the pyrolysis characteristics of native PCS and Cu-loaded PCS were investigated by thermogravimetric analysis (TGA) in order to study the possible recycling of PCS after its use as biosorbent of copper.
  1. Martin-Lara MA, Pagnanelli F, Mainelli S, Calero M, Toro L, J. Hazard. Mater., 156(1-3), 448 (2008)
  2. Martı´n-Lara MA, Herna´ inz F, Calero M, Bla´ zquez G, Tenorio G, Biochem. Eng. J., 44, 151 (2009)
  3. Martin-Lara MA, Rico ILR, Vicente IDA, Garcia GB, de Hoces MC, Desalination, 256(1-3), 58 (2010)
  4. Deng S, Ting YP, Water Res., 39, 2167 (2005)
  5. Martinez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J, J. Hazard. Mater., 133(1-3), 203 (2006)
  6. Ofomaja AE, Naidoo EB, Modise SJ, J. Hazard. Mater., 168(2-3), 909 (2009)
  7. SenthilKumar P, Ramalingam S, Sathyaselvabala V, Kirupha SD, Sivanesan S, Desalination, 266(1-3), 63 (2011)
  8. Yao ZY, Qi JH, Wang LH, J. Hazard. Mater., 174(1-3), 137 (2010)
  9. Mulgund MG, Dabeer SP, Dhar S, Makani V, Jadhav B, Aust J, Basic Appl. Sci., 5, 135 (2011)
  10. Priya AJ, Gajulapalli SR, Abburi K, Boddu VM, Biorem. J., 12, 145 (2008)
  11. El-Ashtoukhy ESZ, Amin NK, Abdelwahab O, Desalination, 223(1-3), 162 (2008)
  12. Vazquez G, Calvo M, Freire MS, Gonzalez-Alvarez J, Antorrena G, J. Hazard. Mater., 172(2-3), 1402 (2009)
  13. Lee SH, Jung CH, Chung H, Lee MY, Yang JW, Process Biochem., 33(2), 205 (1998)
  14. Meunier N, Laroulandie J, Blais JF, Tyagi RD, Bioresour. Technol., 90(3), 255 (2003)
  15. Cimino G, Passerini A, Toscano G, Water Res., 34, 2955 (2000)
  16. Conrad K, Hansen HCB, Bioresour. Technol., 98(1), 89 (2007)
  17. Li Q, Zhai JP, Zhang WY, Wang MM, Zhou J, J. Hazard. Mater., 141(1), 163 (2007)
  18. Han RP, Zhang JH, Zou WH, Shi H, Liu HM, J. Hazard. Mater., 125(1-3), 266 (2005)
  19. Ofomaja AE, Naidoo EB, Carbohydr. Polym., 82, 1031 (2010)
  20. Ofomaja AE, Naidoo EB, J. Taiwan Inst. Chem. Eng., 42, 480 (2011)
  21. Ofomaja AE, Naidoo EB, Modise SJ, J. Environ. Manage., 91, 1674 (2010)
  22. Ofomaja AE, Naidoo EB, Modise SJ, Ind. Eng. Chem. Res., 49(6), 2562 (2010)
  23. Ofomaja AE, Naidoo EB, Modise SJ, Desalination, 251(1-3), 112 (2010)
  24. Argun ME, Dursun S, Karatas M, Gu¨ ru M, Bioresour. Technol., 99, 8691 (2008)
  25. Can MY, Kaya Y, Algur OF, Bioresour. Technol., 97(14), 1761 (2006)
  26. Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF, Bioresour. Technol., 85(2), 155 (2002)
  27. Haykiri-Acma H, Energy Conv. Manag., 44(1), 155 (2003)
  28. Koopal LK, van Riemsdijk WH, Kinniburgh DG, Pure Appl. Chem., 73, 2005 (2001)
  29. Sips R, J. Chem. Phys., 16, 490 (1948)
  30. Pagnanelli F, Mainelli S, Veglio F, Toro L, Chem. Eng. Sci., 58(20), 4709 (2003)
  31. Naja G, Mustin C, Volesky B, Berthelin J, Water Res., 39, 579 (2005)
  32. Kosasih AN, Febrianto J, Sunarso J, Ju YH, Indraswati N, Ismadji S, J. Hazard. Mater., 180(1-3), 366 (2010)
  33. Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y, Biochem. Eng. J., 19, 127 (2004)
  34. Liang S, Guo XY, Feng NC, Tian QH, J. Hazard. Mater., 174(1-3), 756 (2010)
  35. Skoog DA, West DM, Ana´ lisis Instrumental, 2 ed., Nueva Editorial Interamericana, Me´ xico D.F. (1987)
  36. Tiwari A, Tiwari R, Bajpai AK, J. Disper. Sci. Technol., 30, 1208 (2009)
  37. Li N, Bai RB, Ind. Eng. Chem. Res., 45(23), 7897 (2006)
  38. Ho Y, Water Res., 37, 2323 (2003)
  39. Altun T, Pehlivan E, Clean., 35, 601 (2007)
  40. Rathnakumar S, Sheeja RY, Murugesan T, World Acad. Sci. Eng. Tecnol., 56, 880 (2009)
  41. Goksungur Y, Uren S, Guvenc U, Bioresour. Technol., 96(1), 103 (2005)
  42. Do¨nmez G, Aksu Z, Process. Biochem., 38, 751 (2002)
  43. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  44. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  45. Freundlich HMF, Z. Phys. Chem., 57, 385 (1906)
  46. Kratochvil D, Volesky B, Trends. Biotechnol., 16, 291 (1998)
  47. Saha P, Datta S, Sanyai SK, J. Environ. Eng. ASCE., 136, 1409 (2010)
  48. McKay G, El-Geundi MS, Nassar MM, Water Res., 21, 1523 (1987)
  49. Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM, J. Hazard. Mater., 139(2), 345 (2007)
  50. Weber WJ Jr., in: Weber WJ, Jr. (Ed.), Physicochemical Processes for Water Quality Control, John Wiley & Sons, Inc., New York, 199 (1972)
  51. Weber R, J. Energy Inst., 81, 226 (2008)
  52. Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)
  53. Newkirk AE, Anal. Chem., 32, 1558 (1960)
  54. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
  55. Coats AV, Redfern JP, Nature., 201, 68 (1964)
  56. Vachusˇka J , Voboril M, Thermochim. Acta., 2, 379 (1971)
  57. Friedman HL, J. Polym. Sci.: Part C., 6, 183 (1965)