Journal of the American Chemical Society, Vol.133, No.18, 7197-7204, 2011
Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis
According to the concept of active sites, the activity of heterogeneous catalysts correlates with the number of available catalytic sites and the binding affinity of the substrates. Herein, we report a single-molecule, single-particle fluorescence approach to elucidate the inherent photocatalytic activity of exposed surfaces of anatase TiO2, a promising photocatalyst, using redox-responsive fluorogenic dyes. A single-molecule imaging and kinetic analysis of the fluorescence from the products shows that reaction sites for the effective reduction of the probe molecules are preferentially located on the {101} facets of the crystal rather than the {001} facets with a higher surface energy. This surprising discrepancy can be explained in terms of face-specific electron-trapping probability. In situ observation of the catalytic events occurring at the solid/solution interfaces reveals the hidden role of the crystal facets in chemical reactions and their impact on the efficiency and selectivity of heterogeneous (photo)catalysts.