화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.19, 7252-7255, 2011
Biomimetic Multifunctional Porous Chalcogels as Solar Fuel Catalysts
Biological systems that can capture and store solar energy are rich in a variety of chemical functionalities, incorporating light-harvesting components, electron-transfer cofactors, and redox-active catalysts into one supramolecule. Any artificial mimic of such systems designed for solar fuels production will require the integration of complex subunits into a larger architecture. We present porous chalcogenide frameworks that can contain both immobilized redox-active Fe4S4 clusters and light-harvesting photoredox dye molecules in close proximity. These multifunctional gels are shown to electrocatalytically reduce protons and carbon disulfide. In addition, incorporation of a photoredox agent into the chalcogels is shown to photochemically produce hydrogen. The gels have a high degree of synthetic flexibility, which should allow for a wide range of light-driven processes relevant to the production of solar fuels.