화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.20, 7957-7968, 2011
Three-State Trajectory Surface Hopping Studies of the Photodissociation Dynamics of Formaldehyde on ab Initio Potential Energy Surfaces
Full-dimensional, three-state, surface hopping calculations of the photodissociation dynamics of formaldehyde are reported on ab initio potential energy surfaces (PESs) for electronic states S(1), T(1), and S(0). This is the first such study initiated on S(1) with ab initio-calculated spin orbit couplings among the three states. We employ previous PESs for S(0) and T(1), and a new PES for S(1), which we describe here, as well as new spin-orbit couplings. The time-dependent electronic state populations and the branching ratio of radical products produced from S(0) and T(1) states and that of total radical products and molecular products at three total energies are calculated. Details of the surface hopping dynamics are described, and a novel pathway for isomerization on T(1) via S(0) is reported. Final translational energy distributions of H + HCO products from S(0) and T(1) are also reported as well as the translational energy distribution and final rovibrational distributions of H(2) products from the molecular channel. The present results are compared to previous trajectory calculations initiated from the global minimum of S(0). The roaming pathway leading to low rotational distribution of CO and high vibrational population of H(2) is observed in the present calculations.