화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.23, 8794-8797, 2011
Electrostatic Induction of Lipid Asymmetry
The asymmetric arrangement of phospholipids between the two leaflets of the plasma membrane of eukaryotic cells is an integral part of cellular function. ATP-dependent translocases capable of selective lipid transport across the membrane are believed to play a role in this lipid asymmetry, but our understanding of this process is incomplete. Here we show the first direct and quantitative experiments demonstrating the induction of phosphatidylserine asymmetry in a membrane by electrostatic association of poly-L-Iysine in an attempt to elucidate the complex factors which govern the establishment and maintenance of lipid compositional asymmetry in the plasma membrane on a fundamental level. The attractive electrostatic interactions between the charged surface-associated polylysine and phosphatidylserine are sufficient to both induce and maintain an asymmetric arrangement of phosphatidylserine in a planar supported membrane, as measured by sum-frequency vibrational spectroscopy. These studies provide a glimpse of the physical and chemical underpinnings of lipid asymmetry in the eukaryotic plasma membrane.