화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.24, 9536-9544, 2011
Tailoring (Bio)chemical Activity of Semiconducting Nanoparticles: Critical Role of Deposition and Aggregation
The impact of deposition and aggregation on (bio)chemical properties of semiconducting nanoparticles (NPs) is perhaps among the least studied aspects of aquatic chemistry of solids. Employing a combination of in situ FTIR and ex situ X-ray photoelectron spectroscopy (XPS) and using the Mn(II) oxygenation on hematite (alpha-Fe2O3) and anatase (TiO2) NPs as a model catalytic reaction, we discovered that the catalytic and sorption performance of the semiconducting NPs in the dark can be manipulated by depositing them on different supports or mixing them with other NPs. We introduce the electrochemical concept of the catalytic redox activity to explain the findings and to predict the effects of (co)aggregation and deposition on the catalytic and corrosion properties of ferric (hydr)oxides. These results offer new possibilities for rationally tailoring the technological performance of semiconducting metal oxide NPs, provide a new framework for modeling their fate and transport in the environment and living organisms, and can be helpful in discriminating between weakly and strongly adsorbed species in spectra.