- Previous Article
- Next Article
- Table of Contents
Korean Journal of Rheology, Vol.9, No.1, 40-46, March, 1997
입자 분산 PIB용액에 대한 막대상승 및 유변학적 물성
Rod-climbing and Rheological Properties of Particle-Suspended PIB Solutions
초록
폴리이소부틸렌(PIB)/폴리부텐(PB) 고분자 용액에 분산된 입자의 영향을 살펴보기위해 제조된 kaolinite/PIB/PB 용액에 대한 Weissenberg 효과와 유변학적 물성을 조사하였다. Kaolinite 분산 PIB/PB 고분자 용액도 2차유체로 간주될 수 있음이 발견되었으며, 느린 변형속도에서 2차유체로 간주되는 입자 분산 고분자 용액에 대한 막대상승 실험에서 얻는 고분자 용액의 탄성 발현에 의한 상승높이에 비례하는 막대오름상수 β값으로부터 유변학적 특성치들을 구할 수 있었다. 이러한 막대오름상수 P값은 PIB/PB 및 kaolinite/PIB/PB계에서 용매 점도, 입자 농도와 PIB의 농도가 높을수록 증가하는 반면 온도에는 반비례함을 보이는데, 고분자 용융체에서와는 달리 입자 분산 고분자 용액의 경우 입자의 농도가 증가함에 따라 탄성도 증가하는 특징적 거동을 관찰하였다. 한편 Physica MC-120과 RMS 800 Rheometer를 사용하여 PIB고분자 용액의 유변학적 물성들을 측정하였으며, 2차유체 구성 방정식에 근거하여 얻어지는 유변학적 특성치들과 비교하였다.
The Weissenberg effect and its relationship to the rheological properties of particle suspended PIB/PB systems were investigated. It is found that the kaolinite suspended PIB/PB polymer solutions can be regarded as a second-order fluid. For a low deformation rate, the polymer solution can be regarded as a second-order fluid and rod-climbing constant, which is proportional to the climbing height due to the elastic properties, is correlated with the rheological properties of those polymer solutions. The rod-climbing constants of both PIB/PB and kaolinite/PIB/PB systems are found to be increased with the solvent viscosity, particle concentration and polymer concentration. However, it decreases with experimental temperature. It was noted that contrary to the polymer melts, the elasticity of the particle suspended polymer solutions in this study is observed to be increased with particle content. Rheological properties of the PIB polymer solutions were also measured with Physica MC-120 and RMS 800 Rheometer and compared with those obtained from the second-order constitutive equation.
Keywords:Weissenberg effect;Particle suspended PIB solutions;Second-order fluid;Rod-climbing constant.
- Bird RB, Amstrong RC, Hassager O, "Dynamics of Polymeric Liquids," vol. 1, 2nd ed., Wiley, New York, USA (1987)
- Weissenberg K, Nature, 159, 310 (1947)
- Coleman BD, Markovtz H, Noll W, "Viscometric Folws of Non-Nowtonian Fluids," Springer Tracts in Natural Philosophy, Vol. 5, Springer-Verlag, Berlin, Germany (1966)
- Joseph DD, Fosdick RL, Arch. Rat. Mech. Anal., 49, 321 (1973)
- Joseph DD, Beavers GS, Fosdick RL, Arch. Rat. Mech. Anal., 49, 381 (1973)
- Beavers GS, Joseph DD, J. Fluid Mech., 69(3), 475 (1975)
- Beavers GS, Joseph DD, J. Fluid Mech., 81(2), 265 (1977)
- Joseph DD, Beavers GS, Rheol. Acta, 16, 169 (1977)
- Joseph DD, Beavers GS, Arch. Rat. Mech. Anal., 62, 323 (1977)
- Boger DV, J. Non-Newton. Fluid Mech., 3, 87 (1977)
- Choplin L, Carreau PJ, Ait Kadi A, Polym. Eng. Sci., 23, 459 (1983)
- Binnington RJ, Boger DV, Polym. Eng. Sci., 26, 133 (1986)
- Choi HJ, Kim HJ, Korean J. Chem. Eng., 9(2), 74 (1992)
-
Solomon MJ, Muller SJ, J. Rheol., 40(5), 837 (1996)
- Choi HJ, Prieve DC, Jhon MS, J. Rheol., 31, 317 (1987)
- Choi HJ, Shon HS, Lee HJ, Jhon MS, Int. J. Polym. Anal. Characterization, 3, 75 (1996)
- Quinzani LM, McKinely DH, Brown RA, Amstrong RC, J. Rheol., 34, 705 (1990)
- Kaye A, Rheol. Acta, 12, 206 (1973)
- Joseph DD, Beavers GS, Cers A, Dewald C, Hoger A, Than PT, J. Rheol., 28(4), 325 (1984)
-
Nunez GA, Ribeiro GS, Arney MS, Feng J, Joseph DD, J. Rheol., 38(5), 1251 (1994)
- Choi HJ, Korean J. Chem. Eng., 8(1), 18 (1991)
- Brunn P, J. Rheol., 24, 263 (1980)
- Hoffman AF, Gottenberg WG, Trans. Soc. Rheol., 17, 465 (1973)