Korean Journal of Rheology, Vol.9, No.4, 151-162, December, 1997
PMMA/충격보강제 블렌드의 몰폴로지 및 유변학적 성질에 관한 연구
Morphological and Rheological Studies of PMMA/Impact Modifier Blends
초록
다층 구조를 갖는 고무/아크릴 충격보강제가 poly(methyl methacrylate) (PMMA)/충격보강제 블렌드의 몰폴로지와 유변학적 성질에 미치는 영향을 고찰하였다. TEM으로 측정한 블렌드 내의 충격보강제 몰폴로지는 그 함량에 관계없이 균일한 크기의 구형을 이루는 것으로 나타났으며, 파괴 단면의 SEM측정으로부터 충격보강제와 매트릭스 수지와의 강한 결합력을 확인할 수 있었다. 블렌드의 유변물성 측정실험에서는 충격보강제 함량이 복합 점도에 크게 영향을 준 반면, capillary rheometer로부터 얻은 정상상태 점도에는 별 영향을 주지않음이 확인되었다. 특히, 동적응력 실험의 고진동 주파수 영역에서는 일정 충격보강제 함량이상 일때 충격 보강제 자체의 점도와 근사해졌으며, 이와 같은 현상을 충격보강제의 shell분자 상호간 또는 매트릭스 분자와의 엉킴에서 비롯되는 물리적인 상호 작용 측면에서 설명해보았다. 또한, 실험 결과를 Palierne[16]의 비상용성블렌드계의 이멀젼 모델과 비교한 결과, 상당한 차이를 확인할 수 있었으며, 이러한 차이는 위에서 언급한 shell분자 상호간 또는 매트릭스 분자와의 엉킴에 기인한다고 추정된다.
The effects of a multi-layered rubber-acrylic impact modifier on the morphology and rheology of poly(methyl methacrylate) (PMMA)/impact modifier (IM) blends are investigated. Morphologies of the blends obtained by TEM show that the size of the impact modifier domains is uniform and unchanged, and the shape remains spherical, although the IM concentration is increased. It is also shown that the fracture surfaces of the blends directly examined by SEM have indication of strong adhesion between the IM particles and the PMMA matrix. Our results of the rheological study reveal that the complex viscosity of the blends is strongly influenced by the content of the modifier, while the addition of the impact modifier hardly changes the apparent viscosity measured in the capillary experiments. We note that when high frequency is applied in the oscillatory shearing experiments, the complex viscosity of the blend abruptly increases and approaches that of impact modifier, as the IM concentration reaches a certain critical value. The experimentally observed effects of impact modifier on the rheology of the PMMA/IM blends are interpreted considering possible physical interactions via entanglements of the acrylic shell molecules with the PMMA matrix molecules or other shell molecules. In addition, the dynamic shear measurements are compared with an emulsion model for immiscible blends by Palierne [12]. Significant deviations between the results from the dynamic shear experiments and the emulsion model applied are observed, and this may be due to the strong entanglements of the acrylic shell of the impact modifier particles with the PMMA matrix molecules or other shell molecules.
- Bucknall CB, Toughened Plastics, Applied Science Publishers, Ltd. (1977)
- Burchill PJ, Polymer 85: An International Symposium on Characterization and Analysis of Polymers, p. 116 (1985)
- KeithRiew C, Rubber Toughened Plastics, American Chemical Society (1989)
- KeithRiew C, Toughened Plastics 1: Science and Engineering, American Chemical Society (1993)
- Shucai L, Int. J. Polym. Mater., 27, 21 (1994)
- Havriliak S, Polym. Int., 25, 67 (1991)
- Hobbs SY, Polym. Eng. Sci., 26, 74 (1986)
- Miles IS, Rostami S, Multicomponent Polymer Systems, Longman Scientific & Technical, Singapore (1992)
- Haaf F, Breuer H, Echte A, Schmitt BJ, Stabenow J, J. Sci. Ind. Res., 40, 659 (1981)
- Hooley CJ, Moore DR, Whale M, Williams MJ, Plast. Rubber Process Appl., 1, 345 (1981)
- Lovell PA, McDonald J, Saunders DEJ, Young RJ, Proceedings of PRI International Conference on Polymer Latex III, p. 27 (1989)
- Palierne JF, Rheol. Acta, 29, 204 (1990)
- Hwang TW, Preparation of Multi-Layered Acrylate Rubber Particles and Their Application to Toughening of Polymethylmethacylate, Ph.D. Thesis, Seoul National University, Korea (1996)
- Joo YL, Hwang JY, Cho MH, Proceeding of the 55th Annual Technical Conference, '97ANTEC 3 3045 (1997)
- Oldroyd JG, Proceedings of Royal Society of London Series A, 218, 122 (1953)
- Choi SJ, Schowalter WR, Phys. Fluids, 18, 420 (1975)
- Scholz P, Froelich D, Muller R, J. Rheol., 33, 481 (1989)
- Graebling D, Muller R, Palierne JF, Macromolecules, 26, 320 (1993)
- Graebling D, Benkira A, Gallot Y, Muller R, Eur. Polym. J., 30, 301 (1994)
- Germain Y, Ernst B, Genelot O, Dhamani L, J. Rheol., 38(3), 681 (1994)
- Gramspacher H, Meissner J, J. Rheol., 36, 1127 (1992)
- Doi M, Ohta T, J. Chem. Phys., 95, 1242 (1991)
- Guenther GK, Baird DG, J. Rheol., 40(1), 1 (1996)
- Lee HM, Park OO, J. Rheol., 38(5), 1405 (1994)
- Ajji A, Utracki LA, Polym. Eng. Sci., 36(12), 1574 (1996)
- Sawyer LC, Grubb DT, Polymer Microscopy, Chapman and Hall, New York (1987)
- Mariani P, Frassine R, Rink M, Pavan A, Polym. Eng. Sci., 36(22), 2750 (1996)
- Han CD, Multiphase Flow in Polymer Processing, Academic Press (1981)
- Matsuda T, Kitagawa K, Onogi S, Polym. J., 1, 418 (1970)
- Klein J, Perahia D, Warburg S, Nature, 352, 143 (1991)
- Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ, Nature, 370(6491), 634 (1994)
- Klein J, Kumacheva E, Perahia D, Warburg S, Discuss Faraday Soc., 98, 173 (1994)
- Doyle PS, Shaqfeh ESG, Gast AP, Phys. Rev. Lett., 78, 1182 (1997)
- Kumaran V, Macromolecules, 26, 2464 (1993)
- Rubin Y, Alexander S, Europhysics Lett., 13, 49 (1990)
- Barrat JL, Macromolecules, 25, 832 (1992)