화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.1, 426-435, 2012
Synthesis and Molecular Recognition Studies of the HNK-1 Trisaccharide and Related Oligosaccharides. The Specificity of Monoclonal Anti-HNK-1 Antibodies as Assessed by Surface Plasmon Resonance and STD NMR
The human natural killer cell carbohydrate, HNK-1, plays function-conducive roles in peripheral nerve regeneration and synaptic plasticity. It is also the target of autoantibodies in polyneuropathies. It is thus important to synthesize structurally related HNK-1 carbohydrates for optimizing its function-conducive roles, and for diagnosis and neutralization of autoantibodies in the fatal Guillain-Barre syndrome. As a first step toward these goals, we have synthesized several HNK-1 carbohydrate derivatives to assess the specificity of monoclonal HNK-1 antibodies from rodents: 2-aminoethyl glycosides of selectively O-sulfated trisaccharide corresponding to the HNK-1 antigen, its nonsulfated analogue, and modified structures containing 3-O-fucosyl or 6-O-sulfo substituents in the N-acetylglucosamine residues. These were converted, together with several related oligosaccharides, into biotin-tagged probes to analyze the precise carbohydrate specificity of two anti-HNK-1 antibodies by surface plasmon resonance that revealed a crucial role of the glucuronic acid in antibody binding. The contribution of the different oligosaccharide moieties in the interaction was shown by saturation transfer difference (STD) NMR of the complex consisting of the HNK-1 pentasaccharide and the HNK-1 412 antibody.