화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.1, 464-470, 2012
P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions
Zinc oxide is considered as a very promising material for optoelectronics. However, to date, the difficulty in producing stable p-type ZnO is a bottleneck, which hinders the advent of ZnO-based devices. In that context, nitrogen-doped zinc oxide receives much attention. However, numerous reviews report the controversial character of p-type conductivity in N-doped ZnO, and recent theoretical contributions explain that N-doping alone cannot lead, to p-typeness in Zn-rich ZnO. We report here that the ammonolysis at low temperature or ZnO2 yields pure wurtzite-type N-doped ZnO nanoparticles with an extraordinarily large amount of Zn vacancies (up to 20%). Electrochemical and transient spectroscopy studies demonstrate that these Zn-poor nanoparticles exhibit a p-type conductivity that is stable over more than 2 years under ambient conditions.