Journal of the American Chemical Society, Vol.134, No.3, 1430-1433, 2012
Rational Design of Single-Composition ABC Collagen Heterotrimers
Design of heterotrimeric ABC collagen triple helices is challenging due to the large number of competing species that may be formed. Given the required one amino acid stagger between adjacent peptide strands in this fold, a ternary mixture of peptides can form as many as 27 triple helices with unique composition or register. Previously we have demonstrated that electrostatic interactions can be used to bias the helix population toward a desired target. However, homotrimeric assemblies have always remained the most thermally stable species in solution and therefore comprised a significant component of the peptide mixture. In this work we incorporate complementary modifications to this triple-helical design strategy to destabilize an undesirable competing state while compensating for this destabilization in the desired ABC composition. The result of these modifications is a new ABC triple-helical system with high thermal stability and control over composition, as observed by NMR. An additional set of modifications, which exchanges aspartate for glutamate, results in an overall lowering of stability of the ABC triple helix yet shows further improvement in the system's specificity. This rationally designed system helps to elucidate the rules governing the self-assembly of synthetic collagen triple helices and sheds light on the biological mechanisms of collagen assembly.