화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.19, 8260-8267, 2012
Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies
Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle.