Journal of the American Chemical Society, Vol.134, No.20, 8617-8624, 2012
Enhanced Mass Transport of Electroactive Species to Annular Nanoband Electrodes Embedded in Nanocapillary Array Membranes
Electroosmotic flow (EOF) is used to enhance the delivery of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) to an annular nanoband electrode embedded in a nanocapillary array membrane, as a route to high efficiency electrochemical conversions. Multi-layer Au/polymer/Au/polymer membranes are perforated with 10(2)-10(3) cylindrical nanochannels by focused ion beam (FIB) milling and subsequently sandwiched between two axially separated microchannels, producing a structure in which transport and electron transfer reactions are tightly coupled. The middle Au layer, which contacts the fluid only at the center of each nanochannel, serves as a working electrode to form an array of embedded annular nanoband electrodes (EANEs), at which sufficient overpotential drives highly efficient electrochemical processes. Simultaneously, the electric field established between the EANE and the QRE (>10(3) V cm(-1)) drives electro-osmotic flow (EOF) in the nanochannels, improving reagent delivery rate. EOF is found to enhance the steady-state current by >10X over a comparable structure without convective transport. Similarly, the conversion efficiency is improved by approximately 10-fold compared to a comparable microfluidic structure. Experimental data agree with finite element simulations, further illustrating the unique electrochemical and transport behavior of these nanoscale embedded electrode arrays. Optimizing the present structure may be useful for combinatorial processing of on-chip sample delivery with electrochemical conversion; a proof of concept experiment, involving the generation of dissolved hydrogen in situ via electrolysis, is described.