Langmuir, Vol.27, No.15, 9131-9138, 2011
Thermodynamic and Physical Interactions between Novel Polymeric Surfactants and Lipids: Toward Designing Stable Polymer-Lipid Complexes
Surfactant amphiphilic macromolecules (AMs) were complexed with a 1:1 ratio of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), either by a coevaporation (CE) or postaddition (PA) method, to form AM-lipid complexes with enhanced drug delivery applications. By characterizing the surfactant-lipid interactions, these heterogeneous drug delivery systems can be better controlled and engineered for optimal therapeutic outcomes. In this study, the physical interactions between DOPE:DOTAP liposomes and AM surfactants were investigated. Langmuir film balance and isothermal calorimetry studies showed cooperative intermolecular interactions between pure lipids and AM in monolayers and high thermostability of structure formed by the addition of AM micelles to DOTAP: DOPE vesicles in buffer solution respectively. Increasing the AM weight ratio in the complexes via the CE method led to complete vesicle solubilization-from lamellar aggregates, to a mixture of coexisting vesides and micelles, to mixed micelles. Isothermal calorimetry evaluation of AM-lipid complexes shows that, at higher AM weight ratios, PA-produced complexes exhibit greater stability than complexes at lower AM weight ratios. Similar studies show that AM-lipid complexes produced by the CE methods display stronger interactions between AM-lipid components than complexes produced by the PA method. The results suggest that the PA method produces vesicles with AM molecules associated with its outer leaflet only (i.e., an AM-coated vesicle), while the CE method produces complexes ranging from mixed vesicles to mixed micelle in which the AM-lipid components are more intimately associated. These results will be helpful in the design of AM-lipid complexes as structurally defined, stable, and effective drug delivery systems.