Langmuir, Vol.27, No.24, 15155-15164, 2011
Molecular Layer Deposition of Aluminum Alkoxide Polymer Films Using Trimethylaluminum and Glycidol
Molecular layer deposition (MID) of aluminum alkoxide polymer films was examined using trimethlyaluminum (TMA) and glycidol (GLY) as the reactants. Glycidol is a high vapor pressure heterobifunctional reactant with both hydroxyl and epoxy chemical functionalites. These two different functionalities help avoid "double reactions" that are common with homobifuctional reactants. A variety of techniques, including in situ Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance (QCM) measurements, were employed to study the film growth. FTIR measurements at 100 and 125 degrees C observed the selective reaction of the GLY hydroxyl group with the AlCH(3) surface species during GLY exposure. Epoxy ring-opening and methyl transfer from TMA to the surface epoxy species were then monitored during TMA exposure. This epoxy ring-opening reaction is dependent on strong Lewis acid-base interactions between aluminum and oxygen. The QCM experiments observed linear growth with self-limiting surface reactions at 100-175 degrees C under certain growth conditions. With a sufficient purge time of 20 s after TMA and GLY exposures at 125 degrees C, the mass gain per cycle (MGPC) was 19.8 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures were also consistent with a TMA/GLY stoichiometry of 4:3 in the MLD film. This TMA/GLY stoichiometry suggests the presence of Al(2)O(2) dimeric core species. The MLD films resulting from these TMA and GLY exposures also evolved with annealing temperature to form thinner conformal porous films with increased density. Non-self-limiting growth was a problem at shorter purge times and lower temperatures. With shorter purge times of 10 s at 125 degrees C, the MPGC increased dramatically to 134 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures in the CVD regime were consistent with a TMA/GLY stoichiometry of 1:1. The MGPC decreased progressively versus purge time. This behavior was attributed to the removal of reactants that could lead to CVD and the instability of the surface species after the reactant exposures. These results reveal that the TMA and GLY reaction displays much complexity and must be carefully controlled to be a useful MILD process.