Langmuir, Vol.28, No.2, 1169-1174, 2012
Encapsulation of Yeast Cells in Colloidosomes
Polymeric colloidosomes encapsulating viable Baker's yeast cells were prepared. To make the capsules, an aqueous suspension of 153 nm poly(methyl methacrylate-co-butyl acrylate) latex particles plus yeast cells is emulsified in a continuous phase of sunflower oil. By adding a small amount of ethanol to the oil phase, the latex particles at the surface of the emulsion droplets aggregate, forming the colloidosome shells. The microcapsules have been examined using optical, confocal, and scanning electron microscopies. The viability of the yeast cells was tested using fluorescent molecular probes. The encapsulated Baker's yeast cells were able to metabolize glucose from solution, although at a slower rate compared to nonencapsulated yeast. This demonstrates diffusion limitation through the colloidosome shell. The diffusive resistance could be increased by manufacturing colloidosomes with a double latex shell.