화학공학소재연구정보센터
Langmuir, Vol.28, No.4, 2173-2180, 2012
Wetting Transitions in Two-, Three-, and Four-Phase Systems
We discuss wetting of rough surfaces with two-phase (solid-liquid), three-phase (solid-water-air and solid-oil-water), and four-phase (solid-oil-water-air) interfaces mimicking fish scales. We extend the traditional Wenzel and Cassie-Baxter models to these cases. We further present experimental observations of two-, three-, and four-phase systems in the case of metal-matrix composite solid surfaces immersed in water and in contact with oil. Experimental observations show that wetting transitions can occur in underwater oleophobic systems. We also discuss wetting transitions as phase transitions using the phase-field approach and show that a phenomenological gradient coefficient is responsible for wetting transition, energy barriers, and wetting/dewetting asymmetry (hysteresis).