화학공학소재연구정보센터
Langmuir, Vol.28, No.17, 6826-6831, 2012
Fuzzy Nanoassembly of Polyelectrolyte and Layered Clay Multicomposite toward a Reliable Gas Barrier
Flexible and transparent gas-diffusion barriers have played an important role in recent years. The present study describes a flexible barrier film with a tailored architecture of cationic polyelectrolytes and clay/polymer nanoassemblies. Highly oriented and well-aligned barrier films were achieved by the consecutive absorption of flexible cationic polymer and anionic montrnorillonite platelets. The experimental results showed that the layer-by-layer deposition of oppositely charged thin films containing self-assembled poly(vinyl alcohol) and montmorillonites improved their gas barrier characteristics based on the Ca degradation test, enhancing their optical transparency. This nanostructure, fabricated using a solution process, is useful in many applications, for example, flexible and moisture-free organic electronics. This simple and fast method is suitable for the mass coating of large surface areas, as required in industry.