Polymer Bulletin, Vol.67, No.7, 1335-1346, 2011
Formation of mesoglobules in aqueous media from thermo-sensitive poly(ethoxytriethyleneglycol acrylate)
A series of six poly(ethoxytriethyleneglycol acrylate) (PETEGA) homopolymers were synthesized by atom transfer radical polymerization, reversible addition-fragmentation transfer polymerization, and anionic polymerization in order to cover a molecular weight range from 7,000 to 40,000 Da. The polymers exhibited a lower critical solution temperature (LCST) behavior in water, which was observed by the occurrence of a cloud point (CP) at around 35 A degrees C. The transmittance of visible light versus temperature dependence overlapped during the cooling and the heating cycles, showing almost a complete lack of hysteresis. Moreover, instead of the occurrence of an uncontrolled macroscopic phase separation, stable colloidal aggregates (mesoglobules) of narrow distribution in particle size were formed in water at temperatures above the LCST of PETEGA at 1 g L(-1) solutions. The dimensions of the mesoglobules ranged from 91 to 235 nm, and particle size was not influenced by the molecular weight of PETEGA. Temperature changes caused considerable variations of the mesoglobules dimensions, which were smaller at higher temperatures. The addition of an anionic surfactant simultaneously increased the CP values by 4-6 A degrees C and lowered the dimensions of the mesoglobules.