Solid-State Electronics, Vol.63, No.1, 177-183, 2011
Analytical modeling of flicker and thermal noise in n-channel DG FinFETs
A compact physics-based thermal and flicker noise model has been developed for n-channel Double Gate FinFETs with varying structural parameters. The effects of mobility degradation due to velocity saturation, carrier heating and channel length modulation have been incorporated for an accurate modeling of noise. The mobility fluctuations dependent on the inversion carrier density have been considered and a characteristic of the flicker noise different from that of Bulk MOSFETs was observed. This has been validated by the experimental results. Based on the proposed thermal and flicker noise model, a compact expression of the corner frequency has been derived and the effects of the structural parameters such as the length and the thickness of the channel have been analyzed. Finally, the model has been applied for p-channel devices and noise behavior in accordance with experimental data has been obtained. (C) 2011 Elsevier Ltd. All rights reserved.