Transport in Porous Media, Vol.93, No.3, 721-735, 2012
A Simplified Model and Similarity Solutions for Interfacial Evolution of Two-Phase Flow in Porous Media
For two-phase flows of immiscible displacement processes in porous media, we proposed a simplified model to capture the interfacial fronts, which is given by explicit expressions and satisfies the continuity conditions of pressure and normal velocity across the interface. A new similarity solution for the interfacial evolution in the rectangular coordinate system was derived by postulating a first-order approximation of the velocity distribution in the region that the two-phase fluids co-exist. The interfacial evolution equation can be explicitly expressed as a linear function, where the slope of the interfacial equation is simply related to the mobility ratio of two-phase fluids in porous media. The application of the proposed solutions to predictions of interfacial evolutions in carbon dioxide injected into saline aquifers was illustrated under different mobility ratios and operational parameters. For the purpose of comparison, the numerical solutions obtained by level set method and the similarity solutions based on the Dupuit assumptions were presented. The results show that the proposed solution can give a better approximation of interfacial evolution than the currently available similarity solutions, especially in the situation that the mobility ratio is large. The proposed approximate solutions can provide physical insight into the interfacial phenomenon and be readily used for rapidly screening carbon dioxide storage capacity in subsurface formations and monitoring the migration of carbon dioxide plume.
Keywords:Two-phase flow;Porous media;Interfacial dynamics;Similarity solution;Rectangular coordinate system