화학공학소재연구정보센터
AAPG Bulletin, Vol.95, No.11, 1991-2014, 2011
Permeability prediction in chalks
The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability prediction, so we have investigated the use of velocity data to predict permeability. The compressional velocity from wireline logs and core plugs of the chalk reservoir in the South Arne field, North Sea, has been used for this study. We compared various methods of permeability prediction from velocities. The relationships between permeability and porosity from core data were first examined using Kozeny's equation. The data were analyzed for any correlations to the specific surface of the grain, S(g), and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches to enhance permeability prediction from Kozeny's equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The S(g) concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability relationships were replaced by relationships between velocity of elastic waves and permeability using laboratory data, and the relationships were then applied to well-log data. We found that the permeability prediction in chalk and possibly other sediments with large surface areas could be improved significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas.