화학공학소재연구정보센터
Advanced Functional Materials, Vol.21, No.24, 4607-4616, 2011
Scanned Pipette Techniques for the Highly Localized Electrochemical Fabrication and Characterization of Conducting Polymer Thin Films, Microspots, Microribbons, and Nanowires
The limited toolbox for conducting polymer (CP) microscale fabrication and characterization hampers the development of applications such as sensors and actuators. To address this issue, a robust and integrated methodology is presented, capable of electrochemical fabrication and characterization of CPs in a highly localized manner, allowing for CP patterning and spatial mapping of voltammetric response. This is enabled by scanning probe microscopy (SPM) tipped with a single-barreled micropipette to electrochemically polymerize CP microspot arrays, demonstrated for 3,4-ethylenedioxythiophene and aniline monomers. Stationary electropolymerization produces individual microspots; lateral movement produces long microribbons; retraction produces extruded microstructures. Subsequently the same SPM setup is tipped with a double-barreled micropipette to carry out localized cyclic voltammetry. The micropipettes are filled with saline solutions in contact with Ag/AgCl electrodes, forming a thin meniscus of solution at the micropipette tip, which enable an automated approach in air and subsequent contact with the surface. The flexibility of this novel technique is demonstrated by application to 2D poly(3,4-ethylenedioxythiophene) (PEDOT) microspots, microribbons and nanowires, plus polyaniline (PANI) microstructures and self-assembled thin films. Finally, setting up a dynamic electrochemical cell allowed for voltammetricamperometric imaging, simultaneously mapping the morphology and current response of CPs. Future refinements towards the nanoscale through smaller-tipped pipettes should open up new opportunities for voltammetric response mapping of individual CP nanostructures.