화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.94, No.5, 1365-1374, 2012
Reactivation characteristics of stored aerobic granular sludge using different operational strategies
Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O-2/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.