Applied Surface Science, Vol.258, No.13, 5244-5249, 2012
Porous NiTi surfaces for biomedical applications
In this study, the NiTi shape memory alloy was surface modified by plasma electrolytic oxidation (PEO) in Na3PO4 with the aim to produce porous NiTi surfaces for biomedical applications. The oxidation was performed potentiostatically and the characteristics of the resultant surfaces were compared with those obtained in NaAlO2/NaPO2H2 under similar conditions. Surfaces with sub-micron sized pores could be produced in Na3PO4 electrolyte at 300 V. The process was accompanied by intense gas evolution and enhanced thermal effects relative to the NaAlO2/NaPO2H2 electrolyte. The EDS analyses revealed the presence of O, Ti, P, Ni, and a Ni/Ti atomic ratio of 0.4 suggesting preferential oxidation of titanium during the process and depletion of Ni from the surface. No crystalline oxide phases were detected by X-ray diffraction (XRD). By comparison, the layers formed in NaAlO2/NaPO2H2 consisted of crystalline Al2O3 and the Ni/Ti atomic ratio was 0.74. Following oxidation, the wettability and surface free energy of NiTi increased significantly. The findings of this study indicate that the PEO process shows potential for expanding the biofunctionality of NiTi. (c) 2012 Elsevier B.V. All rights reserved.
Keywords:NiTi shape memory alloy;Plasma electrolytic oxidation;Porous layers;Biomedical applications