Applied Surface Science, Vol.258, No.17, 6595-6601, 2012
Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation
Homogeneous and transparent sulfur and nitrogen (S, N)-codoped TiO2 nanocrystalline thin films were deposited on glass substrates by sol gel dip coating method using thiourea (Tu) as a source of sulfur and nitrogen. The surface structure of the films was modified by addition of different concentrations of polyethylene glycol (PEG) into the TiO2 sol. The equal powders of pure and modified TiO2 were also prepared to compare of their photocatalytic activity with films. The films and powders were characterized by different techniques like diffuse reflectance UV-Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX). DRS exhibited a shift in optical absorption wavelength to visible region and XRD analysis showed that only the anatase TiO2 formed in both of film and powder. The photocatalytic activity was evaluated by the degradation of methyl orange (MO) as a model. The modified TiO2 films and powders showed excellent visible-light photocatalytic ability for the degradation of MO under both irradiation of visible and sun light. So that, up to 96% MO can be decomposed in sun light only within 3 h in the presence of a modified TiO2 film consist of Tu/TiO2 molar ratio of 0.45 and 0.9 g PEG. On the other hand, MO solution was discolored completely under sun light in 75 min in the presence of the modified TiO2 powder. (C) 2012 Elsevier B. V. All rights reserved.
Keywords:S;N-codoped TiO2;Photocatalytic activity;Thiourea;Polyethylene glycol;Visible light;Sun light