화학공학소재연구정보센터
Applied Surface Science, Vol.258, No.20, 8209-8213, 2012
The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes
Low-pressure oxygen and argon plasmas were used to pre-treat nylon fabrics, and the modified fabrics, together with the raw fabrics, were subsequently coated with single walled carbon nanotubes (SWCNTs) by a dip-drying process. Scanning electron microscopy (SEM) and Raman spectroscopy analyses indicated the attachment of SWCNTs onto nylon fabrics. After the coating with SWCNTs, the plasma modified fabrics exhibited sheet resistance of as low as 2.0 k Omega/sq. with respect to 4.9 k Omega/sq. of the raw fabrics, presumably owing to the increase of fibre surface roughness incurred by the plasma modification, which is evidenced by SEM analyses. Fourier transform infrared spectroscopy (FTIR) analysis indicates the incorporation of oxygen functionalities on fibre surfaces in the plasma modification. This is responsible for the variation of the electrical conductance of SWCNT-coated fabrics with the type of plasma and the duration of plasma ablation. (C) 2012 Elsevier B.V. All rights reserved.