화학공학소재연구정보센터
Applied Surface Science, Vol.258, No.22, 8683-8688, 2012
Structural and morphological modifications of the Co-thin films caused by magnetic field and pH variation
Cobalt films were deposited by use of the electrochemical process from a cobalt (II) sulfate solution on a titanium electrode and characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The experiments at electrolyte temperature of 50 degrees C were performed which is commonly used in the industrial process. The effects of pH and low uniform magnetic field up to 1 T on structure and morphology changes were investigated. The detected phase composition indicates the presence of both phases: hexagonal centered packed and face centered cubic independent on the pH value and the applied magnetic field amplitude. Calculation of the orientation index of Co phase shows the preferential orientation in the films obtained at higher pH. SEM micro-imagines have shown the nucleus shape transition from coarse-grained to needle-shaped dependent on the application of B-field as well as on the pH variation in the case of higher pH level. Co-films obtained from the electrolyte of low pH were characterized by the fine-grained morphology which was not modified by the influence of magnetic field. AFM images proved the effect on roughness of the Co-films which is closely related with the obtained morphology. (C) 2012 Elsevier B.V. All rights reserved.