Biochemical and Biophysical Research Communications, Vol.416, No.1-2, 64-69, 2011
Expression of membrane-bound NPP-type ecto-phosphodiesterases in rat podocytes cultured at normal and high glucose concentrations
The ecto-nucleotide pyrophosphatase/phosphodiesterase family (E-NPPs) contains two membrane-bound members: E-NPP1 and E-NPP3. These enzymes mediate hydrolysis of extracellular nucleotides and their abnormal expression may affect intracellular signal transduction pathways, leading to cellular dysfunction, e.g., insulin resistance. Podocytes are insulin-dependent glomerular epithelial cells that regulate the glomerular filtration rate. Pathology of podocytes is a hallmark of diabetic nephropathy. Here, we investigated the expressions of E-NPP1 and E-NPP3 and activity of E-NPP enzymes in rat podocytes cultured with 5 mM (NG) or 30 mM glucose (HG). Insulin resistance was determined by measuring changes in [1,2-(3)H]-deoxy-D-glucose uptake in response to insulin. mRNAs of E-NPP1 and E-NPP3 were detected within podocytes. The E-NPP expressions were confirmed at the protein level using western blot and immunofluorescence techniques. At NG, insulin (300 nM, 3 min) increased glucose uptake 1.5-fold: however, this effect was abolished at HG. The protein expressions of E-NPP1 and E-NPP3 were not affected at HG. The E-NPP activities were 24.68 +/- 0.72 and 26.51 +/- 1.55 nmol/min/mg protein at NG and HG, respectively. In conclusion, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 and 3 are expressed on podocytes, but changes in expression of these enzymes are most likely not involved in etiology of insulin resistance in podocytes. (C) 2011 Elsevier Inc. All rights reserved.