화학공학소재연구정보센터
Biotechnology Letters, Vol.34, No.2, 397-404, 2012
Real-time monitoring of extracellular matrix-mediated PC12 cell attachment and proliferation using an electronic biosensing device
The attachment and proliferation of a well-established, neuron-like cell line, rat pheochromocytoma (PC12) cells, on different extracellular matrices (ECMs) was monitored using cellular impedance sensing (CIS). Commonly used ECMs, including fibronectin, laminin, poly-l-lysine, collagen and poly-l-lysine followed by laminin, in addition to DMEM cell culture media alone as a control, were studied: CIS identified the dynamic progress of the adhesion and proliferation of the cells on different ECMs. Among these modified ECM surfaces, the laminin- and poly-l-lysine/laminin-modified surfaces were the best suited for the neuron-to-electrode surface attachment and proliferation, which was confirmed by MTT assays and a scanning electron microscopy analysis. This work provides a simple method to study neuron cell/ECM interactions in a real-time, label-free, and quantitative manner.