Biotechnology Letters, Vol.34, No.4, 641-648, 2012
Freeze drying formulation using microscale and design of experiment approaches: a case study using granulocyte colony-stimulating factor
The lyophilization of proteins in microplates, to assess and optimise formulations rapidly, has been applied for the first time to a therapeutic protein and, in particular, one that requires a cell-based biological assay, in order to demonstrate the broader usefulness of the approach. Factorial design of experiment methods were combined with lyophilization in microplates to identify optimum formulations that stabilised granulocyte colony-stimulating factor during freeze drying. An initial screen rapidly identified key excipients and potential interactions, which was then followed by a central composite face designed optimisation experiment. Human serum albumin and Tween 20 had significant effects on maintaining protein stability. As previously, the optimum formulation was then freeze-dried in stoppered vials to verify that the microscale data is relevant to pilot scales. However, to validate the approach further, the selected formulation was also assessed for solid-state shelf-life through the use of accelerated stability studies. This approach allows for a high-throughput assessment of excipient options early on in product development, while also reducing costs in terms of time and quantity of materials required.
Keywords:Freeze-drying;Granulocyte colony-stimulating factor;Lyophilization;Microplates;Ultra scale-down